Using Dissortative Mating Genetic Algorithms to Track the Extrema of Dynamic Deceptive Functions

نویسندگان

  • Carlos M. Fernandes
  • Juan Julián Merelo Guervós
  • Agostinho C. Rosa
چکیده

Traditional Genetic Algorithms (GAs) mating schemes select individuals for crossover independently of their genotypic or phenotypic similarities. In Nature, this behaviour is known as random mating. However, non-random schemes − in which individuals mate according to their kinship or likeness − are more common in natural systems. Previous studies indicate that, when applied to GAs, negative assortative mating (a specific type of non-random mating, also known as dissortative mating) may improve their performance (on both speed and reliability) in a wide range of problems. Dissortative mating maintains the genetic diversity at a higher level during the run, and that fact is frequently observed as an explanation for dissortative GAs ability to escape local optima traps. Dynamic problems, due to their specificities, demand special care when tuning a GA, because diversity plays an even more crucial role than it does when tackling static ones. This paper investigates the behaviour of dissortative mating GAs, namely the recently proposed Adaptive Dissortative Mating GA (ADMGA), on dynamic trap functions. ADMGA selects parents according to their Hamming distance, via a self-adjustable threshold value. The method, by keeping population diversity during the run, provides an effective means to deal with dynamic problems. Tests conducted with deceptive and nearly deceptive trap functions indicate that ADMGA is able to outperform other GAs, some specifically designed for tracking moving extrema, on a wide range of tests, being particularly effective when speed of change is not very fast. When comparing the algorithm to a previously proposed dissortative GA, results show that performance is equivalent on the majority of the experiments, but ADMGA performs better when solving the hardest instances of the test set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assortative Mating in Genetic Algorithms for Dynamic Problems

Non-random mating seems to be the norm in nature among sexual organisms. A common mating criteria among animals is assortative mating, where individuals mate according to their phenotype similarities (or dissimilarities). This paper explores the effect of including assortative mating in genetic algorithms for dynamic problems. A wide range of mutation rates was explored, since comparative resul...

متن کامل

Solving a Stochastic Cellular Manufacturing Model by Using Genetic Algorithms

This paper presents a mathematical model for designing cellular manufacturing systems (CMSs) solved by genetic algorithms. This model assumes a dynamic production, a stochastic demand, routing flexibility, and machine flexibility. CMS is an application of group technology (GT) for clustering parts and machines by means of their operational and / or apparent form similarity in different aspects ...

متن کامل

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

Assortative Mating Drastically Alters the Magnitude of Error Thresholds

The error threshold of replication is an important notion of the quasispecies evolution model; it is a critical mutation rate (error rate) beyond which structures obtained by an evolutionary process are destroyed more frequently than selection can reproduce them. With mutation rates above this critical value, an error catastrophe occurs and the genomic information is irretrievably lost. Recombi...

متن کامل

Evolutionary Algorithms with Dissortative Mating on Static and Dynamic Environments

Evolutionary Algorithms (EAs) (Bäck, 1996) mimic the process of natural selection by recombining the most promising solutions to a problem from a population of individuals, each one representing a possible solution. There are several methods to select the individuals, but all of them follow the same general rule: good (or partially good) solutions must be chosen more often for recombination eve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/0904.3063  شماره 

صفحات  -

تاریخ انتشار 2009